Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 382
1.
Vet Microbiol ; 292: 110069, 2024 May.
Article En | MEDLINE | ID: mdl-38569324

Epizootic hemorrhagic disease (EHD) virus serotype 8 (EHDV-8) emerged in Spain in autumn 2022. In this study, we aimed to (1) characterize the clinical and lesional presentation of EHDV infection in European red deer (Cervus elaphus), and (2) study the spatial spread of the virus in wild ruminants in Spain after its introduction, in 2022/2023. We confirmed EHDV infection in two clinically compatible sick red deer by PCR and detection of anti-EHDV specific antibodies. EHDV infection occurred in red deer with hyperacute to acute clinical signs and lesions associated to vascular changes leading to death of the animals. Partial sequences of variable segment 2 (VP2) and segment 5 (NS1) genes of the detected viruses had >99% nucleotide identity with EHDV-8 sequences from Tunisia and Italy. In a cross-sectional serological study of EHDV in 592 wild ruminants, mainly red deer (n=578), in southwestern Spain, we detected anti-EHDV antibodies in 37 of 592 samples (6.3%; 95% confidence interval: 4.3-8.2), all from red deer and from the localities where clinical cases of EHD were confirmed in red deer. We conclude that EHDV-8 infection causes severe EHD in European red deer. The serosurvey revealed a limited spread of EHDV-8 in Spanish wild ruminant populations in the first year of virus detection in Spain.


Ceratopogonidae , Deer , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Animals , Cross-Sectional Studies , Spain/epidemiology , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Ruminants , Hemorrhagic Disease Virus, Epizootic/genetics
2.
Viruses ; 16(3)2024 Feb 27.
Article En | MEDLINE | ID: mdl-38543728

Epizootic hemorrhagic disease (EHD) is a non-contagious arthropod-transmitted viral disease and a World Organization for Animal Health (WOAH)-listed disease of domestic and wild ruminants since 2008. EHDV is transmitted among susceptible animals by a few species of midges of genus Culicoides. During the fall of 2021, a large outbreak caused by the epizootic hemorrhagic disease virus (EHDV), identified as serotype 8, was reported in Tunisian dairy and beef farms with Bluetongue virus (BTV)-like clinical signs. The disease was detected later in the south of Italy, in Spain, in Portugal and, more recently, in France, where it caused severe infections in cattle. This was the first evidence of EHDV-8 circulation outside Australia since 1982. In this study, we analyzed the epidemiological situation of the 2021-2022 EHDV outbreaks reported in Tunisia, providing a detailed description of the spatiotemporal evolution of the disease. We attempted to identify the eco-climatic factors associated with infected areas using generalized linear models (GLMs). Our results demonstrated that environmental factors mostly associated with the presence of C. imicola, such as digital elevation model (DEM), slope, normalized difference vegetation index (NDVI), and night-time land surface temperature (NLST)) were by far the most explanatory variables for EHD repartition cases in Tunisia that may have consequences in neighboring countries, both in Africa and Europe through the spread of infected vectors. The risk maps elaborated could be useful for disease control and prevention strategies.


Animal Diseases , Bluetongue virus , Ceratopogonidae , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Cattle , Animals , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Serogroup , Tunisia/epidemiology , Ruminants
3.
Viruses ; 16(2)2024 Jan 24.
Article En | MEDLINE | ID: mdl-38399951

Two strains of viruses, JC13C644 and JC13C673, were isolated from Culicoides tainanus collected in Jiangcheng County, Yunnan Province, situated along the border area shared by China, Laos, and Vietnam. JC13C644 and JC13C673 viruses can cause cytopathic effect (CPE) in mammalian cells BHK21 and Vero cells, and cause morbidity and mortality in suckling mice 48 h after intracerebral inoculation. Whole-genome sequencing was performed, yielding complete sequences for all 10 segments from Seg-1 (3942nt) to Seg-10 (810nt). Phylogenetic analysis of the sub-core-shell (T2) showed that the JC13C644 and JC13C673 viruses clustered with the Epizootic Hemorrhagic Disease Virus (EHDV) isolated from Japan and Australia, with nucleotide and amino acid homology of 93.1% to 98.3% and 99.2% to 99.6%, respectively, suggesting that they were Eastern group EHDV. The phylogenetic analysis of outer capsid protein (OC1) and outer capsid protein (OC2) showed that the JC13C644 and JC13C673 viruses were clustered with the EHDV-10 isolated from Japan in 1998, with the nucleotide homology of 98.3% and 98.5%, and the amino acid homology of 99.6% and 99.6-99.8%, respectively, indicating that they belong to the EHDV-10. Seroepidemiological survey results demonstrated that JC13C644 virus-neutralizing antibodies were present in 29.02% (177/610) of locally collected cattle serum and 11.32% (89/786) of goat serum, implying the virus's presence in Jiangcheng, Yunnan Province. This finding suggests that EHDV-10 circulates not only among blood-sucking insects in nature but also infects local domestic animals in China. Notably, this marks the first-ever isolation of the virus in China and its discovery outside of Japan since its initial isolation from Japanese cattle. In light of these results, it is evident that EHDV Serotype 10 exists beyond Japan, notably in the natural vectors of southern Eurasia, with the capacity to infect local cattle and goats. Therefore, it is imperative to intensify the surveillance of EHDV infection in domestic animals, particularly focusing on the detection and monitoring of new virus serotypes that may emerge in the region and pose risks to animal health.


Ceratopogonidae , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Chlorocebus aethiops , Cattle , Animals , Mice , Hemorrhagic Disease Virus, Epizootic/genetics , Livestock , Serogroup , China/epidemiology , Phylogeny , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Capsid Proteins , Vero Cells , Goats , Amino Acids , Nucleotides
4.
Poult Sci ; 103(2): 103269, 2024 Feb.
Article En | MEDLINE | ID: mdl-38064883

Since 2021, a novel strain of goose reovirus (GRV) has emerged within the goose farming industry in Guangdong province, China. This particular viral variant is distinguished by the presence of white necrotic foci primarily localized in the liver and spleen, leading to substantial economic losses for the poultry industry. However, the etiology, prevalence and genomic characteristics of the causative agent have not been thoroughly investigated. In this study, we conducted an epidemiological inquiry employing suspected GRV samples collected from May 2021 to September 2022. The macroscopic pathological and histopathological lesions associated with GRV-infected clinical specimens were examined. Moreover, we successfully isolated the GRV strain and elucidated the complete genome sequence of the isolate GD21/88. Through phylogenetic and recombination analysis, we unveiled that the GRV strains represent a novel variant resulting from multiple reassortment events. Specifically, the µNS, λC, and σNS genes of GRV were found to have originated from chicken reovirus, while the σA gene of GRV exhibited a higher degree of similarity with a novel duck reovirus. The remaining genes of GRV were traced back to Muscovy duck reovirus. Collectively, our findings underscore the significance of GRV as a pathogenic agent impacting the goose farming industry. The insights gleaned from this study contribute to a more comprehensive understanding of the epidemiology of GRV in Southern China and shed light on the genetic reassortment events exhibited by the virus.


Liver Diseases , Orthoreovirus, Avian , Poultry Diseases , Reoviridae Infections , Animals , Geese/genetics , Chickens/genetics , Orthoreovirus, Avian/genetics , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Phylogeny , Genome, Viral , Genomics , Liver Diseases/veterinary , Necrosis/veterinary , China/epidemiology
5.
J Fish Dis ; 47(1): e13874, 2024 Jan.
Article En | MEDLINE | ID: mdl-37828712

Viral diseases are a serious problem in Atlantic salmon (Salmo salar L.) farming in Norway, often leading to reduced fish welfare and increased mortality. Disease outbreaks in salmon farms may lead to spread of viruses to the surrounding environment. There is a public concern that viral diseases may negatively affect the wild salmon populations. Pancreas disease (PD) caused by salmonid alphavirus (SAV) and heart and skeletal muscle inflammation (HSMI) caused by piscine orthoreovirus-1 (PRV-1) are common viral diseases in salmon farms in western Norway. In the current study, we investigated the occurrence of SAV and PRV-1 infections in 651 migrating salmon post-smolt collected from three fjord systems (Sognefjorden, Osterfjorden and Hardangerfjorden) located in western Norway in 2013 and 2014 by real-time RT-PCR. Of the collected post-smolts, 303 were of wild origin and 348 were hatchery-released. SAV was not detected in any of the tested post-smolt, but PRV-1 was detected in 4.6% of them. The Ct values of PRV-1 positive fish were usually high (mean 32.0; range: 20.1-36.8). PRV-1 prevalence in post-smolts from the three fjords was 6.1% in Sognefjorden followed by 4.8% in Osterfjorden and 2.3% in Hardangerfjorden. The prevalence PRV-1 was significantly higher in wild (6.9%) compared to hatchery-released post-smolt (2.6%). The occurrence of PRV-1 infection in the fish was lowest in the Hardangerfjorden which has the highest fish farming intensity. Our results suggest that SAV infection are uncommon in migrating smolt while PRV-1 infection can be detected at low level. These findings suggest that migrating smolts were at low risk from SAV or PRV-1 released from salmon farms located in their migration routes in 2013 and 2014.


Alphavirus , Fish Diseases , Orthoreovirus , Reoviridae Infections , Salmo salar , Animals , Fish Diseases/epidemiology , Orthoreovirus/genetics , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Norway/epidemiology
6.
Virology ; 589: 109908, 2024 01.
Article En | MEDLINE | ID: mdl-37952464

In recent years, new avian reovirus (ARV) variants caused a variety of symptoms in chickens worldwide, the most important of which was Viral arthritis/tenosynovitis which caused substantial economic losses and has become a concern to the worldwide chicken industry. In this study, we characterized emerging ARV variants in Israel and analyzed their genetic relationship with reference strains. One hundred thirty-four ARV variants were isolated from tendons and synovial fluids of commercial broiler chickens with signs of arthritis/tenosynovitis. Phylogenetic analysis of the partial segment of the sigma C (σC) gene confirmed that these field isolates from Israel could be clustered into all six known clusters. The majority of ARV isolates in Israel belonged to the genotypic cluster 5 (GC5). The strains in this study had a low sequence identity when compared to the commercial vaccine (strain S1133). The findings of this study demonstrated the genetic diversity of ARV strains in Israel from 2015 to 2022. It is reasonable to conclude from the preliminary results of this investigation that Israel has not been subject to selection pressure or the emergence of new ARV variants since the introduction of the live vaccine (ISR-7585). Due to the ongoing emergence of ARV variants, a robust epidemiological monitoring program supported by molecular biology techniques is required to track ARV strains in Israeli poultry flocks.


Arthritis, Infectious , Orthoreovirus, Avian , Poultry Diseases , Reoviridae Infections , Tenosynovitis , Vaccines , Animals , Tenosynovitis/veterinary , Chickens , Israel/epidemiology , Phylogeny , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Arthritis, Infectious/veterinary
7.
Poult Sci ; 103(2): 103370, 2024 Feb.
Article En | MEDLINE | ID: mdl-38150831

The past few years have witnessed a rapid increase in cases of viral arthritis caused by avian reovirus (ARV) in chicken farms in China, attributed to the emergence of variant strains that render traditional vaccines ineffective, leading to substantial economic losses. In this study, we successfully isolated a novel ARV strain, designated as 2023ARV-GS-SDAU-1, from chickens in a broiler flock vaccinated with an ARV vaccine in Gansu province. We performed whole-genome sequencing and assessed its pathogenicity through 2 infection routes: oral administration and intraperitoneal injection. Our analysis revealed significant variations in the σA gene, associated with the inhibition of interferon secretion, compared to known ARV strains. The highest nucleotide identity observed was below 80%. Additionally, the σC gene exhibited notable variations compared to its homologous strains within the same group. Multiple alignment of the amino acid sequences classified the 2023ARV-GS-SDAU-1 strain under genotype I. Furthermore, our pathogenicity experiments indicated that the isolated strain exhibited more severe pathogenicity when administered via intraperitoneal injection in SPF chickens. In summary, our data suggest that the 2023ARV-GS-SDAU-1 strain represents a novel variant circulating in broiler flocks in China. These findings enrich currently available genetic information on ARV strains and provide a new complete genome sequence.


Orthoreovirus, Avian , Poultry Diseases , Reoviridae Infections , Animals , Orthoreovirus, Avian/genetics , Virulence , Chickens , Poultry Diseases/epidemiology , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Phylogeny
8.
J Med Microbiol ; 72(10)2023 Oct.
Article En | MEDLINE | ID: mdl-37801020

Avian reoviruses (ARVs) have a significant economic impact on the poultry industry, affecting commercial and backyard flocks. Spread feco-orally, or vertically, many do not cause morbidity, but pathogenic strains can contribute to several diseases, including tenosynovitis/arthritis, which is clinically the most significant. The last decade has seen a surge in cases in the US, and due to ongoing evolution, seven genotypic clusters have now been identified. Control efforts include strict biosecurity and vaccination with commercial and autogenous vaccines. Research priorities include improving understanding of pathogenesis and developing new vaccines guided by ongoing molecular and serologic surveillance.


Orthoreovirus, Avian , Poultry Diseases , Reoviridae Infections , Animals , Orthoreovirus, Avian/genetics , Chickens , Poultry Diseases/prevention & control , Reoviridae Infections/veterinary , Reoviridae Infections/epidemiology , Phylogeny
9.
Poult Sci ; 102(10): 102969, 2023 Oct.
Article En | MEDLINE | ID: mdl-37566967

Since 2005, novel duck reoviruses have been outbreaks in duck breeding areas such as central China and South China. In recent years, the incidence rate of this disease is still increasing, bringing serious economic losses to waterfowl breeding industry. This study isolated 3 novel duck reoviruses (NDRV-SDLS, NDRV-SDWF, and NDRV-SDYC) from sick ducks in 3 local duck farms in Shandong Province. The study aimed to investigate the characteristics of these viruses. The virus is inoculated into duck embryo fibroblasts, where the virus replicates to produce syncytium and dies within 3 to 5 d. The viruses were also isolated from infected ducks, and RT-PCR amplified the whole genomes after passage purification in duck embryos. The resulting whole genome was analyzed for genetic evolution. The total length of the gene sequencing was 23,418 bp, divided into 10 fragments. Gene sequence comparison showed that the 3 strains had high similarity with novel duck reoviruses (NDRV) but low similarity with chicken-origin reovirus (chicken ARV) and Muscovy duck reovirus (MDRV), especially in the σC segment. Phylogenetic analysis of the 10 fragments showed that the 3 isolates constituted the same evolutionary clade as other DRV reference strains and were far related to ARV and MDRV in different evolutionary clades. The results of all 10 segments indicate that the isolates are in the evolutionary branch of NDRV, suggesting that the novel waterfowl reovirus is the dominant circulating strain in Shandong. This study complements the gene bank information of NDRV and provides references for vaccine research and disease prediction of NDRV in Shandong.


Orthoreovirus, Avian , Poultry Diseases , Reoviridae Infections , Animals , Orthoreovirus, Avian/genetics , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Phylogeny , Chickens , China/epidemiology , Poultry Diseases/epidemiology
10.
Arch Virol ; 168(9): 230, 2023 Aug 14.
Article En | MEDLINE | ID: mdl-37578645

Here, we report the complete genome sequences of epizootic hemorrhagic disease (EHD) virus serotypes 5 (EHDV-5) and 6 (EHDV-6) isolated in the Yaeyama Islands of Okinawa Prefecture, Japan. The EHDV-5 strain, ON-11/E/16, which was isolated in 2016, is, to our knowledge, the second EHDV-5 strain to be isolated after the first was isolated in Australia in 1977. In each of the genome segments, ON-11/E/16 was most closely related to EHDV strains of different serotypes isolated in Australia and Japan. Our results support the idea that various serotypes of EHDV have been circulating while causing reassortment in the Asia-Pacific region. In all genome segments, the EHDV-6 strain, ON-3/E/14, which was isolated in 2014, was highly similar to EHDV-6 strain HG-1/E/15, which was detected in affected cattle during the EHD epidemic in Hyogo prefecture in 2015. Therefore, these two EHDV-6 strains, ON-3/E/14 and HG-1/E/15, may have the same origin. However, it is unclear whether EHDV-6 was transmitted directly between the locations where those strains were isolated/detected (approx. 1,500 km apart) or whether EHDV-6 strains of the same origin entered each location at different times. In addition, we cannot rule out the possibility that EHDV-6 infection has spread unnoticed through asymptomatic cattle in other areas of Japan. Therefore, further investigation into EHDV infection in cattle is necessary for a more detailed understanding of the ecology of EHDV in Japan.


Cattle Diseases , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Animals , Cattle , Serogroup , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Hemorrhagic Disease Virus, Epizootic/genetics , Phylogeny , Japan/epidemiology , Cattle Diseases/epidemiology
11.
Poult Sci ; 102(8): 102776, 2023 Aug.
Article En | MEDLINE | ID: mdl-37302330

Novel Duck Reovirus (NDRV) that has been found throughout the world in waterfowl, and it has been extensively described. Here, we report the complete genome sequence of a NDRV strain isolated in China called NDRV YF10. This strain was collected from 87 samples with infected ducks in South Coastal Area. The NDRV genome consists of 23,419 bp. With the assistance of computer analysis, the promoter and terminator of each gene segment and 10 viral genes segments were identified, which encode polypeptides ranging from 98 to 1,294 amino acids. All gene fragments of this virus strain were determined and compared to previously reported strains, revealing genetic variation with similarity rates ranging from 96 to 99% for each gene segment. Each gene segment formed 2 host-associated groups, the waterfowl-derived reovirus and the avian-derived reovirus, except for the S1 gene segment, which was closely related to ARV evolution and formed a host-independent subcluster. This difference may be due to Avian Reovirus (ARV) evolving in a host-dependent manner. In order to evaluate the pathogenicity of YF10, a novel isolated strain of NDRV was tested in 2 types of ducks. It was observed that the YF10 isolated strain exhibits varying degrees of virulence, highlighting the potential risk posed to different types of ducks. In conclusion, our findings emphasize the importance of epidemiology studies, molecular characterization, and prevention of NDRV in waterfowl.


Orthoreovirus, Avian , Poultry Diseases , Reoviridae Infections , Animals , Virulence , Chickens/genetics , Orthoreovirus, Avian/genetics , Whole Genome Sequencing/veterinary , China/epidemiology , Phylogeny , Poultry Diseases/epidemiology , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary
12.
Viruses ; 15(6)2023 05 27.
Article En | MEDLINE | ID: mdl-37376559

The circulation of Bluetongue (BT) and Epizootic Hemorrhagic Disease (EHD) in the Middle East has already been reported following serological analyses carried out since the 1980s, mostly on wild ruminants. Thus, an EHD virus (EHDV) strain was isolated in Bahrain in 1983 (serotype 6), and more recently, BT virus (BTV) serotypes 1, 4, 8 and 16 have been isolated in Oman. To our knowledge, no genomic sequence of these different BTV strains have been published. These same BTV or EHDV serotypes have circulated and, for some of them, are still circulating in the Mediterranean basin and/or in Europe. In this study, we used samples from domestic ruminant herds collected in Oman in 2020 and 2021 for suspected foot-and-mouth disease (FMD) to investigate the presence of BTV and EHDV in these herds. Sera and whole blood from goats, sheep and cattle were tested for the presence of viral genomes (by PCR) and antibodies (by ELISA). We were able to confirm the presence of 5 BTV serotypes (1, 4, 8, 10 and 16) and the circulation of EHDV in this territory in 2020 and 2021. The isolation of a BTV-8 strain allowed us to sequence its entire genome and to compare it with another BTV-8 strain isolated in Mayotte and with homologous BTV sequences available on GenBank.


Bluetongue virus , Cattle Diseases , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Sheep , Cattle , Animals , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Serogroup , Oman/epidemiology , Ruminants , Goats
13.
Viruses ; 15(6)2023 05 28.
Article En | MEDLINE | ID: mdl-37376563

Epizootic hemorrhagic disease (EHD) is an infectious viral disease caused by epizootic hemorrhagic disease virus (EHDV) and EHDV frequently circulates in wild and domestic ruminants. Sporadic outbreaks of EHD have caused thousands of deaths and stillbirths on cattle farms. However, not much is known about the circulating status of EHDV in Guangdong, southern China. To estimate the seroprevalence of EHDV in Guangdong province, 2886 cattle serum samples were collected from 2013 to 2017 and tested for antibodies against EHDV using a competitive ELISA. The overall seroprevalence of EHDV reached 57.87% and was highest in autumn (75.34%). A subset of positive samples were serotyped by a serum neutralization test, showing that EHDV serotypes 1 and 5-8 were circulating in Guangdong. In addition, EHDV prevalence always peaked in autumn, while eastern Guangdong had the highest EHDV seropositivity over the five-year period, displaying apparent temporal-spatial distribution of EHDV prevalence. A binary logistic model analysis indicated a significant association between cattle with BTV infections and seroprevalence of EHDV (OR = 1.70, p < 0.001). The co-infection of different serotypes of EHDV and BTV raises a high risk of potential genomic reassortment and is likely to pose a significant threat to cattle, thus urging more surveillance to monitor their circulating dynamics in China.


Bluetongue virus , Cattle Diseases , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Animals , Cattle , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Hemorrhagic Disease Virus, Epizootic/genetics , Seroepidemiologic Studies , Farms , Antibodies, Viral
15.
Virologie (Montrouge) ; 27(1): 16-17, 2023 02 01.
Article En | MEDLINE | ID: mdl-36896771

Epizootic hemorrhagic disease (EHD) is a non-contagious arthropod-borne disease transmitted by blood-sucking midges of the genus Culicoides. It affects domestic and wild ruminants, mainly white-tailed deer and cattle. At the end of October and in November 2022, outbreaks of EHD were confirmed in several cattle farms in Sardinia and Sicily. This is the first detection of EHD in Europe. The loss of free status and the lack of effective prophylactic measures could have significant economic consequences for infected countries.


Deer , Hemorrhagic Disorders , Reoviridae Infections , Animals , Cattle , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Reoviridae Infections/diagnosis , Ruminants , Europe/epidemiology , Sicily
16.
Virologie (Montrouge) ; 27(1): 27-29, 2023 02 01.
Article Fr | MEDLINE | ID: mdl-36891778

Epizootic hemorrhagic disease (EHD) is a non-contagious arthropod-borne disease transmitted by blood-sucking midges of the genus Culicoides. It affects domestic and wild ruminants, mainly white-tailed deer and cattle. At the end of October and in November 2022, outbreaks of EHD were confirmed in several cattle farms in Sardinia and Sicily. This is the first detection of EHD in Europe. The loss of free status and the lack of effective prophylactic measures could have significant economic consequences for infected countries.


Deer , Hemorrhagic Disorders , Reoviridae Infections , Animals , Cattle , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Reoviridae Infections/diagnosis , Ruminants , Europe/epidemiology , Sicily
17.
Vet Microbiol ; 277: 109620, 2023 Feb.
Article En | MEDLINE | ID: mdl-36543090

Since March 2021, an infectious characterized by white necrotic foci throughout the goose body has appeared in the major goose-producing regions in China. This disease has caused economic hardship for goose farms in many regions of China with approximately 50 % mortality. A novel goose-origin orthoreovirus was isolated from the spleen of diseased geese and designated as N-GRV/HN/Goose/2021/China (N-GRV-HN21) strain. Next-generation sequencing and phylogenetic analysis revealed that the isolate was a reassortant virus containing viral gene segments from three ARV serotypes that infect duck, muscovy duck, and goose. Geese infection test showed that both N-GRV-HN21-infected and contacted geese displayed whole-body white necrotic foci. N-GRV RNA was detected in different organs of both infected and contacted geese, indicating that the N-GRV isolate is pathogenic and transmissible in geese. Seroconversion was also observed in experimentally infected and contacted geese. A prevalence study of 323 goose serum samples collected from different goose breeding areas showed that 86 % of the geese were positive for N-GRV. In conclusion, all results warrant the necessity to monitor orthoreovirus epidemiology and reassortment as the orthoreovirus could be an important pathogen for the waterfowl industry and a novel orthoreovirus might emerge to threaten animal and public health.


Orthoreovirus, Avian , Orthoreovirus , Poultry Diseases , Reoviridae Infections , Animals , Orthoreovirus/genetics , Phylogeny , Virulence , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , China/epidemiology , Necrosis/veterinary , Ducks , Recombination, Genetic , Geese , Poultry Diseases/epidemiology
19.
BMC Vet Res ; 18(1): 306, 2022 Aug 10.
Article En | MEDLINE | ID: mdl-35948980

Piscine orthoreovirus genotype-1 (PRV-1) is a virus commonly associated with Atlantic salmon aquaculture with global variability in prevalence and association with disease. From August 2016 to November 2019, 2,070 fish sampled at 64 Atlantic salmon net-pen farm sites during 302 sampling events from British Columbia, Canada, were screened for PRV-1 using real-time qPCR. Nearly all populations became PRV-1 positive within one year of seawater entry irrespective of location, time of stocking, or producer. Cohorts became infected between 100-300 days at sea in > 90% of repeatedly sampled sites and remained infected until harvest (typically 500-700 days at sea). Heart inflammation, which is sometimes attributed to PRV-1, was also assessed in 779 production mortalities from 47 cohorts with known PRV status. Mild heart inflammation was common in mortalities from both PRV + and PRV- populations (67% and 68% prevalence, respectively). Moderate and severe lymphoplasmacytic heart inflammation was rare (11% and 3% prevalence, respectively); however, mainly arose (66 of 77 occurrences) in populations with PRV-1. Detection of PRV-1 RNA was also accomplished in water and sediment for which methods are described. These data cumulatively identify that PRV-1 ubiquitously infects farmed Atlantic salmon in British Columbia during seawater production but only in rare instances correlates with heart inflammation.


Fish Diseases , Reoviridae Infections , Salmo salar , Animals , Arrhythmias, Cardiac/veterinary , Canada , Fish Diseases/epidemiology , Genotype , Inflammation/veterinary , Orthoreovirus , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary
20.
Transbound Emerg Dis ; 69(5): e3386-e3392, 2022 Sep.
Article En | MEDLINE | ID: mdl-35810357

A fusogenic virus was isolated from a flock of breeder Pekin ducks in 2019, Hungary. The affected flock experienced a marked decrease in egg production. Histopathological lesions were seen in the oviduct and in the lungs of birds sent for diagnostic investigation. The fusogenic agent was characterized as an orthoreovirus by viral metagenomics. The assembled viral genome was composed of 10 genomic segments and was 23,433 nucleotides (nt) in length. The study strain, designated Reo/HUN/DuckDV/2019, shared low-to-medium gene-wise sequence identity with avian orthoreovirus strains from galliform and anseriform birds (nt, 38.90%-72.33%) as well as with representative strains of neoavian orthoreoviruses (nt, 40.07%-68.23%). On the contrary, the study strain shared 86.48%-95.01% pairwise nt sequence identities with recent German and Chinese reovirus isolates, D2533/6 and Ych, respectively. Phylogenetic analysis clustered all three unusual waterfowl pathogens on a monophyletic branch, indicating a common evolutionary origin of Reo/HUN/DuckDV/2019 with these enigmatic orthoreoviruses described over the past few years. The finding that a candidate new orthoreovirus species, tentatively called Avian orthoreovirus B, was isolated in recent years in Europe and Asia in moribund ducks seems an alarming sign that needs to be better evaluated by extending laboratory diagnosis of viral pathogens in countries where the waterfowl industry is important.


Orthoreovirus, Avian , Orthoreovirus , Reoviridae Infections , Animals , Birds , Ducks , Genome, Viral , Nucleotides , Orthoreovirus/genetics , Orthoreovirus, Avian/genetics , Phylogeny , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Sequence Analysis, DNA/veterinary
...